Difference between Fuzzy and Crisp Transportation Problem Using Pentagonal Fuzzy Numbers with ranking by α-cut Method

Dr. Ashok S. Mhaske
Department of Mathematics Dada Patil Mahavidhyalaya, Karjat-Ahmednagar.

Abstract

: Uncertainty plays important role in science, technology, and the medical branch. In all types of fuzzy numbers, pentagonal fuzzy numbers are important due to their shape. In this article, crisp transportation problems converted into fuzzy transportation problems with pentagonal fuzzy numbers. Fuzzy North West Corner Method, fuzzy Least Cost Method, and Fuzzy Vogel's Method apply to obtain an initial basic feasible solution. The result and comparison of a crisp transportation problem and fuzzy transportation problem are discussed at the end. In real-life applications available forecast demand and supply are often uncertain because some information is incomplete or unavailable.

Keywords: Fuzzy Pentagonal, Error, Fuzzy Transportation, α - Cut, Ranking

Introduction

Arindam Chaudhuri [6] used trapezoidal fuzzy number for solving the transportation problem. Hiroaki Ishii [7] used random transportation costs to solve fuzzy transportation Problem. W.Ritha [10] developed Multi-objective two-stage fuzzy transportation problem. K. L. Bondar and Ashok Mhaske[1] Fuzzy Transportation Problem with Error by Using Lagrange's Polynomial. S. Nareshkumar [9] used modified Vogel's approximation method to study fuzzy transportation problems. Surjeet Singh Chauhan [8] applied improved VAM with robust ranking technique to find the solution of fuzzy transportation problem. Ashok S Mhaske, Kirankumar L Bondar used Fuzzy Transportation Problem by Using Triangular, Pentagonal and HeptagonalFuzzy Numbers With Lagrange’s Polynomial to Approximate Fuzzy Cost for Nonagon and Hendecagon.

Basic Definitions

Pentagonal fuzzy number:

Pentagonal fuzzy number $A=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ and its membership function is:

$$
\mu_{A}(\mathrm{x})=\left\{\begin{array}{lr}
0 & x<x_{1} \\
\frac{x-x_{1}}{x_{2}-x_{1}} & x_{1} \leq x<x_{2} \\
\frac{x-x_{2}}{x_{3}-x_{2}} & x_{2} \leq x<x_{3} \\
1 & x=x_{3} \\
\frac{x_{4}-x}{x_{4}-x_{3}} & x_{3}<x \leq x_{4} \\
\frac{x_{5}-x}{x_{5}-x_{4}} & x>x_{5}
\end{array}\right.
$$

Figure 1: Pentagonal fuzzy number $\left[x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right]$

Operations on pentagonal fuzzy numbers:

Let $\bar{X}=\left(x_{1}, x_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right), \bar{Y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}\right)$ be any two pentagonal fuzzy pentagonal numbers then algebraic properties defined as below:
i) Addition: $\bar{X}(+) \bar{Y}=\left(x_{1}, x_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right)+\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}\right)$

$$
=\left(x_{1}+y_{1}, x_{2}+y_{2}, x_{3}+y_{3}, x_{4}+y_{4}, x_{5}+y_{5}\right)
$$

ii) Subtraction: $\bar{X}(-) \bar{Y}=\left(x_{1}, x_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right)-\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}\right)$

$$
=\left(x_{1}-y_{5}, x_{2}-\right.
$$

$$
\left.\mathrm{y}_{4}, \mathrm{x}_{3}-\mathrm{y}_{3}, x_{4}-\mathrm{y}_{2}, \mathrm{x}_{5}-\mathrm{y}_{1}\right)
$$

iii) Multiplication: $\bar{X}(\times) \bar{Y}=\left(x_{1}, x_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right) \times\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}, \mathrm{y}_{5}\right)$

$$
=\left(\mathrm{x}_{1} \times \mathrm{y}_{1}, x_{2} \times y_{2}, \mathrm{x}_{3} \times \mathrm{y}_{3}, \mathrm{x}_{4} \times \mathrm{y}_{4}, x_{5} \times \mathrm{y}_{5}\right)
$$

α - Cut for pentagonal fuzzy number:
For any $\alpha \in[0,1]$

$$
\begin{aligned}
& \frac{x_{1}^{\alpha}-x_{1}}{x_{2}-x_{1}}=\alpha, \quad \frac{x_{2}^{\alpha}-x_{2}}{x_{3}-x_{2}}=\alpha \quad \frac{x_{4}-x_{4}^{\alpha}}{x_{4}-x_{3}}=\alpha, \frac{x_{5}-x_{4}^{\alpha}}{x_{5}-x}=\alpha \\
& x_{1}^{\alpha}=\left(x_{2}-\mathrm{x}_{1}\right) \alpha+\mathrm{x}_{1}, x_{2}^{\alpha}=\left(x_{3}-\mathrm{x}_{2}\right) \alpha+\mathrm{x}_{2},
\end{aligned}
$$

$$
x_{4}^{\alpha}=-\left(\mathrm{x}_{4}-\mathrm{x}_{3}\right) \alpha+x_{4}, x_{5}^{\alpha}=-\left(\mathrm{x}_{5}-\mathrm{x}_{4}\right) \alpha+x_{5}
$$

Thus $\bar{X}_{\alpha}=\left[\begin{array}{llll}x_{1}^{\alpha} & x_{3}^{\alpha} & x_{4}^{\alpha} & x_{5}^{\alpha}\end{array}\right]$
Ordering two pentagonal fuzzy numbers:
Pentagonal fuzzy numbers \bar{A} and \bar{B} can be order by finding α cut say \bar{A}_{α} and \bar{B}_{α}. If α cut \bar{A}_{α} is less than or equal to each α-cut of \bar{B}_{α} for any $\alpha=0.5$ then fuzzy number $\bar{A} \leq \bar{B}$.
$\bar{A}_{\alpha}=\left[p_{1}=\left(x_{2}-x_{1}\right) * \alpha+x_{1}, \mathrm{p}_{2}=\left(x_{3}-x_{2}\right)^{*} \alpha+x_{2}, \mathrm{p}_{3}=-\left(x_{4}-x_{3}\right)^{*} \alpha+\mathrm{x}_{3}, \mathrm{p}_{4}=-\left(\mathrm{x}_{5}-x_{4}\right)^{*} \alpha+\mathrm{x}_{5}\right]$
$\bar{B}_{\alpha}=\left[q_{1}=\left(\mathrm{y}_{2}-y_{1}\right)^{*} \alpha+\mathrm{y}_{1}, \mathrm{q}_{2}=\left(\mathrm{y}_{3}-\mathrm{y}_{2}\right)^{*} \alpha+\mathrm{y}_{2}, q_{3}=-\left(\mathrm{y}_{4}-y_{3}\right)^{*} \alpha+y_{3}, q_{4}=-\left(y_{5}-y_{4}\right)^{*} \alpha+y_{5}\right]$
Then $\bar{A} \leq \bar{B}$ if $\frac{\left(p_{1}+p_{2}+p_{3}+p_{4}\right)}{4} \leq \frac{\left(q_{1}+q_{2}+q_{3}+q_{4}\right)}{4}$ otherwise $\bar{B} \leq \bar{A}$
Method for solving fuzzy transportation problem:
Crisp transportation problem is converted into fuzzy transportation problem using Pentagonal, Fuzzy numbers. Fuzzy North West Corner Method (FNWCM), Fuzzy Matrix Minima Method (FMMM) and Fuzzy Vogel's Approximation Method (FVAM) methods are used to obtain the initial basic feasible solution to fuzzy transportation.

Mat-lab Code:

clc
'Enter Your first Pentagonal number\n'
a1=input(");
b1=input(");
c1=input(");
d1=input(");
e1=input(");
$a=\left[\begin{array}{llll}a 1 & b 1 & \text { c1 d1 e1] }\end{array}\right.$
'Enter Your second Pentagonal numberln'
a2=input(");
b2=input(");
c2=input(");
d2=input(");
e2=input(");
b=[a2 b2 c2 d2 e2]
'Enter Your Choice 1= Addition 2= Subtraction $3=$ Multiplication , $4=$ order'
ch=input(");
switch(ch)
case 1
'Addition of two fuzzy Pentagonal number is'
$\mathrm{c}=\mathrm{a}+\mathrm{b}$
case 2
'subtraction of two fuzzy Pentagonal is(a-b)'
$\mathrm{c}=[\mathrm{a} 1-\mathrm{e} 2 \mathrm{~b} 1-\mathrm{d} 2 \mathrm{c} 1-\mathrm{c} 2$ d1-b2 e1-a2]
case 3
'Multiplication of two fuzzy Pentagonalis(a-b)'
$\mathrm{c}=\left[\mathrm{a} 1 * \mathrm{a} 2 \mathrm{~b} 1 * \mathrm{~b} 2 \mathrm{c} 1^{*} \mathrm{c} 2 \mathrm{~d} 1 * \mathrm{~d} 2 \mathrm{e} 1 * 2\right]$
otherwise
disp('unknown method')
end

Numerical example:
Consider the following crisp transportation problem
Table 1: Crisp transportation problem

Origin	\bar{D}_{1}	\bar{D}_{2}	\bar{D}_{3}	\bar{D}_{4}	Supply
\bar{o}_{1}	6	3	5	4	23
\bar{o}_{2}	5	9	2	7	17
\bar{o}_{3}	5	7	8	6	9
Demand	8	13	18	10	

Table 2: Comparison of minimum transportation cost

	NWCR	LCM	VAM
Minimum	190	161	160
Transportation cost			

Fuzzy Transportation Problem by using Pentagonal Fuzzy Number
Table 3: FNWCM for pentagonal fuzzy number

$\begin{aligned} & \stackrel{\lambda}{2} \\ & \stackrel{2}{亏} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$				
$\begin{aligned} & . \overline{\tilde{E}} \\ & \text { ت, } \\ & \text { B} \\ & 0 \end{aligned}$	6 $+$ m N	$\begin{array}{ll} \sigma & \overparen{n} \\ \infty & n \\ \sim & \cdots \\ \infty & i \\ \cdots & \vdots \end{array}$	$$	$\begin{aligned} & \overparen{n} \\ & \simeq \\ & = \\ & 0 \\ & 0 \end{aligned}$	

Table 4: FLCM for pentagonal fuzzy number

Table 5: FVAM for pentagonal fuzzy number

	$\begin{aligned} & \mathfrak{N} \\ & \underset{\sim}{N} \\ & \underset{N}{N} \\ & \underset{N}{N} \\ & \text { N } \end{aligned}$	$\left(\begin{array}{lllll}15 & 16 & 17 & 18 & 19\end{array}\right)$	$\begin{aligned} & = \\ & \frac{0}{a} \end{aligned}$		
		a ∞ \sim 0 n		- $=$ 0 0 ∞	

Table 6: Result comparison

North West Corner Method			
Fuzzy Number	IBFS Solution	Error	
Pentagonal Fuzzy Number	199.6		
Crisp	190	9.6	
Least Cost Method			
Pentagonal Fuzzy Number	175.65		14.65
Crisp			
Pentagonal Fuzzy Number	VAM		
Crisp		160	

Conclusion and Future Work

Fuzzy pentagonal numbers are used to convert the crisp transportation problem into a fuzzy transportation problem. The fuzzy transportation problem is solved by using fuzzy NWCR, LCM and VAM methods. Error calculated between fuzzy and crisp transportation problem. Through the numerical example, we can conclude that minimum fuzzy transportation cost obtained from pentagonal fuzzy numbers close to cost
obtained by crisp transportation problem. In future, we want to extend our research work for trapezoidal, hexagonal etc. fuzzy numbers.

Bibliography:

[1].K. L. Bondar and Ashok Mhaske. "Fuzzy Transportation Problem with Error by Using Lagrange's Polynomial." The Journal of Fuzzy Mathematics ISSN: 1066-8950 Vol. 24. 2016: pp.825-832.
[2]. Ashok S. Mhaske, K. L. Bondar. "Fuzzy Transportation by Using Monte Carlo method" Advances in Fuzzy Mathematics. ISSN 0973-533X Volume 12, Number 1 (2017), pp. 111-127.
[3]. Ashok S. Mhaske, K. L. Bondar. "Fuzzy Database and Fuzzy Logic for Fetal Growth Condition." Asian Journal of Fuzzy and Applied Mathematics, ISSN: 2321 - 564X, Volume 03 - Issue 03, June 2015.
[4].K. L. Bondar., Ashok S. Mhaske, "Fuzzy Unbalanced Transportation Problem by Using Monte Carlo Method" Aayushi International Interdisciplinary Research Journal (AIIRJ). ISSN 2349-638x, Issue No. 25, March 2018.
[5].Ashok S Mhaske, Kirankumar L Bondar, " Fuzzy Transportation Problem by Using Triangular, Pentagonal and HeptagonalFuzzy Numbers With Lagrange's Polynomial to Approximate Fuzzy Cost for Nonagon and Hendecagon." International Journal of Fuzzy System Applications, Volume 9 • Issue 1 • January-March 2020.
[6].Arindam Chaudhuri, Kajal De, Dipak Chatterjee and Pabitra Mitra, "Trapezoidal Fuzzy Numbers For The Transportation Problem." Proceedings of 15th Mathematics Conference,Department of Mathematics, University of Dhaka, Dhaka, Bangladesh, 2007, pp. 42-43.
[7].Hiroaki Ishii and Yue. Ge, "Fuzzy Transportation Problem With Random Transportation Costs. " Scientiae Mathematicae Japonicae Online, 2009.
[8].Surjeet Singh Chauhan and Nidhi Joshi, "Solution of Fuzzy Transportation Problem using Improved VAM with Roubast Ranking Technique." International Journal of Computer Applications (0975-8887), November 2013.
[9].S. Nareshkumar and S. KumaraGhuru, "Solving Fuzzy Transportation Problem Using Symmetric Triangular Fuzzy Number." International Journal of Advanced Research in Mathematics and Applications, 2017.
[10]. W.Ritha and J.Merline Vinotha, "Multi-objective Two Stage Fuzzy Transportation Problem." Journal of Physical Sciences, Vol. 13, 2009, 107-120,ISSN: 0972-8791.

